إدخال مسألة...
الرياضيات الأساسية الأمثلة
خطوة 1
خطوة 1.1
يُعد إيجاد القاسم المشترك الأصغر لقائمة القيم بمثابة إيجاد المضاعف المشترك الأصغر لقواسم تلك القيم.
خطوة 1.2
المضاعف المشترك الأصغر هو أصغر عدد موجب يمكن قسمته على جميع الأعداد بالتساوي.
1. اكتب قائمة العوامل الأساسية لكل عدد.
2. اضرب كل عامل في أكبر عدد من مرات ظهوره في أي رقم.
خطوة 1.3
العدد ليس عددًا أوليًا لأن له عامل موجب واحد فقط، وهو العدد نفسه.
ليس أوليًا
خطوة 1.4
المضاعف المشترك الأصغر لـ هو حاصل ضرب كل العوامل الأساسية في أكبر عدد من المرات التي تظهر فيها في أي من العددين.
خطوة 1.5
عوامل هي ، والتي تساوي حاصل ضرب في نفسها بمعدل من المرات.
تحدث بمعدل من المرات.
خطوة 1.6
عامل هو نفسها.
تحدث بمعدل من المرات.
خطوة 1.7
المضاعف المشترك الأصغر لـ هو حاصل ضرب كل العوامل في أكبر عدد من المرات التي تظهر فيها في أي من الحدين.
خطوة 2
خطوة 2.1
اضرب كل حد في في .
خطوة 2.2
بسّط الطرف الأيسر.
خطوة 2.2.1
ألغِ العامل المشترك لـ .
خطوة 2.2.1.1
ألغِ العامل المشترك.
خطوة 2.2.1.2
أعِد كتابة العبارة.
خطوة 2.3
بسّط الطرف الأيمن.
خطوة 2.3.1
ألغِ العامل المشترك لـ .
خطوة 2.3.1.1
أخرِج العامل من .
خطوة 2.3.1.2
ألغِ العامل المشترك.
خطوة 2.3.1.3
أعِد كتابة العبارة.
خطوة 3
خطوة 3.1
أعِد كتابة المعادلة في صورة .
خطوة 3.2
اطرح من كلا المتعادلين.
خطوة 3.3
بسّط .
خطوة 3.3.1
بسّط كل حد.
خطوة 3.3.1.1
أعِد كتابة بالصيغة .
خطوة 3.3.1.2
وسّع باستخدام طريقة "الأول، الخارجي، الداخلي، الأخير".
خطوة 3.3.1.2.1
طبّق خاصية التوزيع.
خطوة 3.3.1.2.2
طبّق خاصية التوزيع.
خطوة 3.3.1.2.3
طبّق خاصية التوزيع.
خطوة 3.3.1.3
بسّط ووحّد الحدود المتشابهة.
خطوة 3.3.1.3.1
بسّط كل حد.
خطوة 3.3.1.3.1.1
اضرب في .
خطوة 3.3.1.3.1.2
انقُل إلى يسار .
خطوة 3.3.1.3.1.3
اضرب في .
خطوة 3.3.1.3.2
أضف و.
خطوة 3.3.1.4
طبّق خاصية التوزيع.
خطوة 3.3.1.5
بسّط.
خطوة 3.3.1.5.1
اضرب في .
خطوة 3.3.1.5.2
اضرب في .
خطوة 3.3.2
أضف و.
خطوة 3.3.3
أضف و.
خطوة 3.3.4
اطرح من .
خطوة 3.4
حلّل المتعادل الأيسر إلى عوامل.
خطوة 3.4.1
لنفترض أن . استبدِل بجميع حالات حدوث .
خطوة 3.4.2
حلّل إلى عوامل بالتجميع.
خطوة 3.4.2.1
أعِد ترتيب الحدود.
خطوة 3.4.2.2
بالنسبة إلى متعدد حدود بالصيغة ، أعِد كتابة الحد الأوسط كمجموع من حدين حاصل ضربهما ومجموعهما .
خطوة 3.4.2.2.1
أخرِج العامل من .
خطوة 3.4.2.2.2
أعِد كتابة في صورة زائد
خطوة 3.4.2.2.3
طبّق خاصية التوزيع.
خطوة 3.4.2.3
أخرِج العامل المشترك الأكبر من كل مجموعة.
خطوة 3.4.2.3.1
جمّع أول حدين وآخر حدين.
خطوة 3.4.2.3.2
أخرِج العامل المشترك الأكبر من كل مجموعة.
خطوة 3.4.2.4
حلّل متعدد الحدود إلى عوامل بإخراج العامل المشترك الأكبر، .
خطوة 3.4.3
استبدِل كافة حالات حدوث بـ .
خطوة 3.5
إذا كان أي عامل فردي في المتعادل الأيسر يساوي ، فالعبارة بأكملها تساوي .
خطوة 3.6
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 3.6.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 3.6.2
أوجِد قيمة في .
خطوة 3.6.2.1
اطرح من كلا المتعادلين.
خطوة 3.6.2.2
اقسِم كل حد في على وبسّط.
خطوة 3.6.2.2.1
اقسِم كل حد في على .
خطوة 3.6.2.2.2
بسّط الطرف الأيسر.
خطوة 3.6.2.2.2.1
ألغِ العامل المشترك لـ .
خطوة 3.6.2.2.2.1.1
ألغِ العامل المشترك.
خطوة 3.6.2.2.2.1.2
اقسِم على .
خطوة 3.6.2.2.3
بسّط الطرف الأيمن.
خطوة 3.6.2.2.3.1
انقُل السالب أمام الكسر.
خطوة 3.7
عيّن قيمة العبارة بحيث تصبح مساوية لـ وأوجِد قيمة .
خطوة 3.7.1
عيّن قيمة بحيث تصبح مساوية لـ .
خطوة 3.7.2
أوجِد قيمة في .
خطوة 3.7.2.1
اطرح من كلا المتعادلين.
خطوة 3.7.2.2
اقسِم كل حد في على وبسّط.
خطوة 3.7.2.2.1
اقسِم كل حد في على .
خطوة 3.7.2.2.2
بسّط الطرف الأيسر.
خطوة 3.7.2.2.2.1
ألغِ العامل المشترك لـ .
خطوة 3.7.2.2.2.1.1
ألغِ العامل المشترك.
خطوة 3.7.2.2.2.1.2
اقسِم على .
خطوة 3.7.2.2.3
بسّط الطرف الأيمن.
خطوة 3.7.2.2.3.1
انقُل السالب أمام الكسر.
خطوة 3.8
الحل النهائي هو كل القيم التي تجعل المعادلة صحيحة.
خطوة 4
يمكن عرض النتيجة بصيغ متعددة.
الصيغة التامة:
الصيغة العشرية:
صيغة العدد الذي به كسر: